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Evolutionary game theory provides a framework to study the behavior of
large populations where individuals playing different strategies (or having dif-
ferent biological traits) interact through some game, and they can replicate
according to their payoffs.

Evolutionary games with pairwise interactions were extensively studied [1, 2].
Local interactions with various opponents had also been considered, where in
each round the same fixed number of players are randomly selected from the
population to play against each other. However, there are many situations in
which the number of players can vary over time and even between rounds. It
also happens that the optimal strategies in a two players game could not be
optimal in a three players game, thus interactions between multiple players can
not be reduced to pairwise interactions. Therefore, it is interesting to model
and study the case in which the game can be played by a different number of
players in each round when the strategy must be selected previously, without
knowing a priori the exact number of players involved.

The concept of evolutionary stable strategy (ESS) is a central when studying
time evolution, because it satisfies the additional stronger condition of stability,
which implies that if an ESS is reached, then the proportions of players playing
the different strategies do not change over time

In this work [3] we formalize and generalize the definition of evolutionary
stable strategy (ESS) to be able to include a scenario in which the game can be
played by a different number of players in each round. Even though a similar
problem was analyzed previously in terms of two types of players, incumbents
(original population) and mutants (invaders)[4], only two combinations of them
were considered. Here we show that all combinations must be considered, and a
hierarchy of payoffs is needed in order to characterize an ESS when the number
of players in each interaction is a random variable.

In order to explore these questions, we study the simplest non-trivial case
of the duel-truel game. As usual, in a duel two players aim to eliminate each
other, while in a truel three players are involved. Each player can use one of two
possible strategies, that we call perfect and mediocre strategies. When a player
uses the strategy perfect, then it annihilates its competitors with probability
1.0, while a player using strategy mediocre kill its opponents with probability
0.5. The paradox is that, when a truel game is played, a perfect player is not
necessarily the winner of the game, even having the highest killing probability.
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This surprising result was already present in the early literature on truels [5].
As a consequence, in a duel game the ESS corresponds to the entire population
playing strategy perfect, whereas in a truel game the ESS corresponds to all
players using strategy mediocre.

This led us to consider what the ESS would be in a scenario where the
number of players is a random variable, the so-called Poisson games, where at
each iteration step of the dynamics a duel is played with probability p ∈ (0, 1),
and a truel is played with the complementary probability 1− p.

We also introduce an agent-based model in which players interact in a com-
plex network by copying the strategies of their neighbors, with a dynamics that
in mean-field evolves following the replicator equation. Let us observe that the
replicator dynamics is usually defined in terms of new individuals entering the
population, by selecting a pure strategy with a probability proportional to the
payoff given the current mix of agents. Our approach has an independent inter-
est, and has the advantage that can be used in networks with a fixed number of
nodes or agents, bypassing the issue of how to add new nodes as agents replicate.

We perform extensive Monte Carlo (MC) simulations of the model in dif-
ferent types of networks, and develop an analytical approach based on a pair
approximation (PA) that allows to obtain approximate equations for the evolu-
tion of the fraction of perfect agents in the network. This approach enable us
to investigate if the transitions between ESS in pure and mixed strategies found
within the Nash equilibrium theory are also observed in complex networks, and
to identify how the networks’ topology affects the existence of mixed equilibria.

In Fig. 1 we can see that the coexistence of perfect and mediocre players
predicted by the mean-field approach when interactions are all-to-all (dashed
line) is also present when agents interact in complex topologies (solid lines),
and have a good agreement with MC simulations (symbols). Figure 2 shows the
phase diagram in the p–µ space, where µ is the mean degree of the network.
We observe that the coexistence phase shrinks as µ decreases, but it does not
seem to vanish completely even for small values of µ. As a consequence, a given
unstable mix of the two types of players for some value of p, can turn into stable
when the mean number of neighbors of a player is increased beyond a threshold.
This result implies that the network of interactions affects the stability of the
system by inducing a stable coexistence when its connectivity increases.
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Figure 1: Stationary fraction of perfect agents
σstat vs duel probability p, for the values of the
mean degree µ indicated in the legend. The
dashed line corresponds to the stable solution σCG

on a Complex Graph (CG), while solid lines repre-
sent the solution from the PA equations. Symbols
correspond to the average value of σ at the sta-
tionary state obtained from MC simulations on a
CG of size N = 103 (diamonds), and DRRGs of
size N = 104 and degrees µ = 6 (squares) and
µ = 3 (circles).
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Figure 2: Phase diagram on the p–µ space show-
ing the transition lines between the coexistence
and dominance phases, obtained from the PA
equations for an ER network.
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